비결정성 (Non-determinism)

비결정성 (Non-determinism) 알고리즘이나 시스템에서 동일한 입력에 대해 매번 다른 과정을 거쳐 다른 결과를 도출할 수 있는 특성 특징 다중 선택: 각 단계에서 여러 가능한 다음 단계 중 하나를 임의로 선택할 수 있다. 병렬 처리: 여러 가능한 경로를 동시에 탐색할 수 있는 개념적 모델을 제공한다. 결정성과의 차이: 결정성 알고리즘은 각 단계에서 다음 단계가 유일하게 결정되는 반면, 비결정성 알고리즘은 그렇지 않다. 비결정성 알고리즘 비결정성 알고리즘은 다음과 같은 특징을 가진다. 실행 경로의 다양성: 동일한 입력에 대해 여러 가능한 실행 경로가 존재한다. 비결정도: 각 단계에서 선택 가능한 다음 단계의 최대 개수를 비결정도라고 한다. 계산 능력: 비결정성 알고리즘과 결정성 알고리즘의 계산 능력은 동일하다. 응용 NP 문제: 비결정성 알고리즘으로 다항식 시간 내에 해결 가능한 결정형 문제를 NP 문제라고 한다. 유한 오토마타: 비결정적 유한 오토마타(NFA)는 탐색과 백트래킹 기법을 통해 모든 가능한 선택을 시도한다. 탐색 및 백트래킹 알고리즘: 비결정성은 여러 가지 경우를 순차적으로 계산하며 최적값을 갱신하는 백트래킹 기법의 모델로 사용된다. 장점 간결한 표현: 복잡한 언어나 시스템을 비결정성을 통해 더 간결하게 정의할 수 있다. 논증 간소화: 비결정성을 통해 공식적인 논증을 간단히 할 수 있다. 모델링 유연성: 실제 세계의 불확실성이나 복잡성을 모델링하는 데 유용하다. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 import random import threading # 결정적인 함수의 예 def deterministic_sum(a, b): return a + b # 항상 같은 입력에 대해 같은 결과 # 비결정적인 함수의 예 def non_deterministic_choice(options): return random.choice(options) # 매번 다른 결과가 나올 수 있음 # 비결정적인 멀티스레딩 예제 shared_counter = 0 lock = threading.Lock() def increment_counter(): global shared_counter current = shared_counter # 의도적으로 경쟁 조건을 만듦 threading.Thread(target=lambda: None).start() shared_counter = current + 1 def run_concurrent_increments(n): threads = [] for _ in range(n): t = threading.Thread(target=increment_counter) threads.append(t) t.start() for t in threads: t.join() return shared_counter 다양한 상황에서 발생할 수 있다: ...

October 13, 2024 · 4 min · Me

동시성 (Concurrency)

동시성 (Concurrency) 동시성 (Concurrency)은 여러 작업이 동시에 실행되는 것처럼 보이지만, 실제로는 매우 빠르게 작업 간 전환을 하면서 처리하는 방식이다. 예를 들어, 하나의 CPU 코어에서 여러 작업을 빠르게 번갈아가며 실행하여 마치 동시에 여러 작업이 처리되는 것처럼 보이게 만든다. Source: https://dynamogeeks.com/blog/concurrency-vs-parallelism-a-simplified-explanation 동시성의 특징 논리적 개념: 동시성은 물리적으로 동시에 실행되는 것이 아닌, 논리적으로 동시에 실행되는 것처럼 보이게 하는 개념이다. 자원 효율성: CPU가 유휴 상태로 있지 않고 계속해서 작업을 처리하므로 시스템 자원을 효율적으로 사용할 수 있다. 응답성 향상: 여러 작업을 번갈아가며 처리하므로 전체적인 시스템의 응답성이 향상된다. 동시성의 구현 방법 멀티스레딩: 하나의 프로세스 내에서 여러 스레드를 사용하여 작업을 동시에 처리한다. 비동기 프로그래밍: 작업을 비동기적으로 처리하여 한 작업이 완료되기를 기다리지 않고 다른 작업을 수행할 수 있게 한다. 동시성의 장점 성능 향상: 여러 작업을 동시에 처리함으로써 전체적인 처리 속도를 높일 수 있다. 자원 활용 최적화: CPU와 같은 시스템 자원을 최대한 활용할 수 있다. 사용자 경험 개선: 특히 UI 애플리케이션에서 동시성을 활용하면 사용자 반응성을 크게 향상시킬 수 있다. 동시성의 주의점 복잡성 증가: 동시성 프로그래밍은 일반적인 순차적 프로그래밍보다 복잡할 수 있다. 동기화 문제: 여러 작업이 공유 자원에 동시에 접근할 때 발생할 수 있는 문제를 주의해야 한다. 디버깅의 어려움: 동시에 실행되는 작업들 간의 상호작용으로 인해 버그를 찾고 수정하기가 어려울 수 있다. 동시성의 실제 예시 웹 브라우저: 여러 탭을 동시에 열어 각각 다른 웹페이지를 로드하면서 사용자 입력을 받는 것은 동시성의 좋은 예이다. 데이터베이스 시스템: 여러 사용자의 쿼리를 동시에 처리하는 데이터베이스 시스템도 동시성을 활용한다. 동시성은 현대 프로그래밍에서 매우 중요한 개념으로, 시스템의 성능을 향상시키고 사용자 경험을 개선하는 데 크게 기여한다. ...

October 4, 2024 · 2 min · Me

Metric

Metric Metric는 시스템의 상태와 성능을 수치화하여 측정하는 중요한 관측 도구이다. Metric는 시스템의 상태, 동작, 성능 등을 나타내는 수치화된 측정값이다. 예를 들어, 웹 서버의 응답 시간, CPU 사용률, 메모리 사용량 등이 Metric가 될 수 있다. 장점 효율적인 저장: 숫자 데이터는 저장 공간을 적게 차지한다. 빠른 쿼리: 시계열 데이터베이스를 사용하여 빠른 검색과 분석이 가능하다. 장기 추세 분석: 오랜 기간 동안의 데이터를 저장하고 분석할 수 있다. 시각화 용이성: 그래프나 대시보드로 쉽게 표현할 수 있다. 단점 초기 설정에 시간과 노력이 필요하다 너무 많은 Metric는 오히려 혼란을 줄 수 있다 저장 공간과 처리 리소스가 필요하다 Metric의 중요성 성능 모니터링: 시스템의 전반적인 성능을 지속적으로 모니터링할 수 있다. 문제 감지: 비정상적인 패턴이나 임계값 초과를 빠르게 감지할 수 있다. 용량 계획: 리소스 사용량 추세를 분석하여 미래의 용량을 계획할 수 있다. 최적화: 성능 병목 현상을 식별하고 최적화할 수 있는 기회를 제공한다. Metric의 구성 요소 일반적인 Metric는 다음 요소로 구성된다: ...

September 28, 2024 · 3 min · Me

Trace

Trace Trace는 분산 시스템에서 요청의 흐름을 추적하고 시각화하는 데 사용된다. Trace는 분산 시스템에서 요청이나 트랜잭션이 여러 서비스와 컴포넌트를 통과하는 전체 여정을 기록한 것이다. 각 Trace는 하나 이상의 span으로 구성되며, 첫 번째 span은 root span이라고 한다. Trace의 목적 분산 시스템에서의 요청 흐름 이해 성능 병목 지점 식별 서비스 간 의존성 파악 오류 및 지연의 근본 원인 분석 Trace의 구성 요소 트레이스는 다음과 같은 구성 요소들로 이루어진다: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 // 트레이스 시작 Span rootSpan = tracer.spanBuilder("checkout-process") .setSpanKind(SpanKind.SERVER) .startSpan(); try (Scope scope = rootSpan.makeCurrent()) { // 자식 스팬 생성 Span paymentSpan = tracer.spanBuilder("process-payment") .setParent(Context.current().with(rootSpan)) .startSpan(); try { processPayment(); paymentSpan.setStatus(StatusCode.OK); } catch (Exception e) { paymentSpan.setStatus(StatusCode.ERROR, e.getMessage()); throw e; } finally { paymentSpan.end(); } } finally { rootSpan.end(); } 트레이스 구성의 핵심 요소들: ...

September 28, 2024 · 3 min · Me

Log

Log Log는 애플리케이션 실행 시 생성되는 텍스트 기반의 기록이다. 이는 구조화된 형식(예: JSON)이나 비구조화된 텍스트 형식으로 제공될 수 있다. 문제가 발생했을 때 무슨 일이 있었는지 추적할 수 있게 해주며, 시스템의 동작을 이해하는 데 필수적인 정보를 제공한다. 로그 구조를 설계할 때는 다음과 같은 원칙들을 고려해야 한다: 일관성(Consistency): 모든 로그 항목은 동일한 구조와 형식을 따라야 한다. 이는 로그 파싱과 분석을 용이하게 만든다. 검색 가능성(Searchability): 주요 필드들은 쉽게 검색하고 필터링할 수 있는 형태여야 한다. 확장성(Extensibility): 새로운 정보를 추가할 필요가 생겼을 때 기존 구조를 해치지 않고 확장할 수 있어야 한다. 상세도 조절(Verbosity Control): 로그 레벨을 통해 필요한 상세도를 조절할 수 있어야 한다. 로그 구조를 효과적으로 설계하면 다음과 같은 이점을 얻을 수 있다: ...

September 28, 2024 · 4 min · Me