Low-Level Virtual Machine

Low-Level Virtual Machine (LLVM) LLVM은 소스 코드를 최적화하고 대상 플랫폼에 맞는 기계어로 변환하는 모듈식 컴파일러 프레임워크이다. 원래 “Low-Level Virtual Machine"의 약자에서 출발했으나, 현재는 그 이름 그대로 하나의 독립적인 프로젝트가 되어 다양한 언어와 플랫폼을 지원하고 있다. LLVM은 소스 코드 → 중간 표현(IR) 변환부터, 여러 단계의 최적화, 그리고 최종 기계어 코드 생성을 위한 백엔드로 구성되며, 컴파일 타임, 링크 타임, 런타임, 심지어 유휴 시간까지 전반에 걸친 지속적 최적화(Lifelong Optimization) 를 지원한다. LLVM의 핵심 아이디어는 컴파일러를 모듈화하여 프론트엔드(언어 파싱), 중간표현(IR) 최적화, 백엔드(코드 생성) 단계를 독립적으로 개발하고 재사용할 수 있게 만든 것으로, 컴파일러 개발의 유연성과 효율성을 크게 향상시켰다. ...

December 5, 2024 · 6 min · Me

복잡도 클래스(Complexity Classes)

복잡도 클래스(Complexity Classes) 복잡도 클래스(Complexity Classes)는 계산 이론의 핵심 개념으로, 문제 해결에 필요한 계산 자원(시간, 공간 등)의 양에 따라 문제들을 분류하는 체계이다. 복잡도 클래스는 계산 복잡도 이론의 핵심 개념으로, 알고리즘과 문제의 복잡성을 분류하고 이해하는 데 중요한 역할을 한다. 이 분야는 컴퓨터 과학에서 “무엇이 효율적으로 계산 가능한가?“라는 근본적인 질문을 다룬다. 알고리즘의 효율성 분석과 문제 간의 관계 이해에 기여하며, 특히 P vs NP 문제와 같은 근본적인 질문을 탐구하는 기반이 된다. P vs NP 문제를 비롯한 미해결 과제들은 인공지능, 암호학, 최적화 분야에 직간접적 영향을 미친다. ...

October 13, 2024 · 4 min · Me

Adjacency Matrix vs Adjacency List

그래프 표현 방법: 인접 행렬(Adjacency Matrix)과 인접 리스트(Adjacency List) 비교 그래프는 컴퓨터 과학에서 매우 중요한 자료구조로, 데이터 간의 관계를 효과적으로 표현할 수 있다. 그래프를 표현하는 방법을 선택할 때는 해결하려는 문제의 특성과 그래프의 구조를 고려해야 한다. 간선이 적은 희소 그래프의 경우 인접 리스트가 메모리와 성능 면에서 우수 간선이 많은 밀집 그래프나 정점 간 연결 여부를 빠르게 확인해야 하는 경우에는 인접 행렬이 적합하다. 실제로는 두 방법을 혼합하거나 응용한 자료구조를 사용하기도 한다. 많은 실제 응용 사례(소셜 네트워크, 웹 페이지 연결 등)에서는 정점 수에 비해 간선 수가 적은 희소 그래프의 특성을 가지므로 인접 리스트가 더 많이 사용되는 경향이 있다. ...

December 7, 2024 · 5 min · Me

CSR vs SSR

CSR (Client Side Rendering) vs. SSR (Server Side Rendering) 비교 항목 Client Side Rendering (CSR) Server Side Rendering (SSR) 렌더링 방식 브라우저에서 JavaScript를 실행하여 콘텐츠를 렌더링 서버에서 HTML을 생성하여 클라이언트에 전달 초기 로딩 시간 상대적으로 긺 (JavaScript 번들을 모두 다운로드하고 실행해야 함) 상대적으로 빠름 (이미 렌더링된 HTML을 받음) 초기 컨텐츠 표시 빈 페이지 후 로딩 즉시 컨텐츠 표시 서버 부하 낮음 (정적 파일만 제공) 높음 (매 요청마다 HTML 생성) SEO 친화성 낮음 (JavaScript 실행 전까지 빈 HTML) 높음 (완성된 HTML이 검색 엔진에 제공) 상호작용성 높음 상대적으로 낮음 후속 페이지 로딩 빠름 각 요청마다 서버 처리 필요 Time to First Paint (TFP) 느림 빠름 Time to Interactive (TTI) JavaScript 로드 후 빠름 JavaScript 로드 필요시 추가 시간 소요 메모리 사용량 클라이언트 측 높음 서버 측 높음 사용자 경험 초기 로딩 후 빠른 페이지 전환 페이지 전환마다 서버 요청 필요 캐싱 전략 JavaScript 파일과 정적 자원 캐싱 용이 동적 HTML 캐싱이 복잡할 수 있음 개발 복잡도 상대적으로 단순 (단일 JavaScript 애플리케이션) 상대적으로 복잡 (서버와 클라이언트 로직 모두 관리) 보안 중요 로직이 클라이언트에 노출될 수 있음 중요 로직을 서버에서 처리하여 안전 오프라인 기능 구현 용이 제한적 데이터 업데이트 실시간 업데이트 용이 페이지 새로고침 필요 대역폭 사용 초기에 높음, 이후 낮음 지속적으로 중간 수준 서버 인프라 요구사항 낮음 (정적 호스팅 가능) 높음 (동적 서버 필요) 리소스 사용 클라이언트 리소스 많이 사용 서버 리소스 많이 사용 데이터 업데이트 실시간 업데이트 용이 페이지 새로고침 필요할 수 있음 적합한 사용 사례 대시보드, SPA, 관리자 패널 블로그, 뉴스 사이트, 전자상거래 프레임워크 예시 React, Vue, Angular Next.js, Nuxt.js, Angular Universal 유지보수성 프론트엔드 중심 유지보수 프론트엔드와 백엔드 모두 유지보수 필요 이 두 방식은 각각의 장단점이 있으며, 최근에는 이들의 장점을 결합한 하이브리드 렌더링 방식(예: Next.js의 정적 생성과 서버 사이드 렌더링 조합)이 많이 사용되고 있다. 프로젝트의 요구사항과 특성에 따라 적절한 렌더링 방식을 선택하는 것이 중요하다. ...

December 2, 2024 · 2 min · Me

Native Compiler vs Cross Compiler

Native Compiler vs. Cross Compiler Native Compiler와 Cross Compiler는 모두 프로그래밍 언어로 작성된 소스 코드를 기계어 또는 실행 가능한 바이너리로 변환하는 컴파일 도구이지만, 그들이 생성하는 산출물이 실행되는 대상이 서로 다르다는 점에서 구분된다. Native Compiler는 컴파일러가 실행되는 동일한 시스템의 하드웨어와 운영체제에 최적화된 코드를 생성한다. Cross Compiler는 호스트 시스템에서 실행되지만 다른 플랫폼(즉, 대상 시스템)에서 실행될 코드를 생성한다. 네이티브 컴파일러(Native Compiler)의 이해 네이티브 컴파일러는 컴파일러가 실행되는 환경(호스트 시스템)과 동일한 환경(타겟 시스템)에서 실행될 코드를 생성하는 컴파일러이다. 즉, 개발자가 사용하는 컴퓨터와 동일한 운영체제 및 CPU 아키텍처에서 실행될 프로그램을 컴파일한다. ...

October 14, 2024 · 6 min · Me

Traversal 방법 비교

Traversal 방법 비교 트리 순회는 트리 구조의 모든 노드를 체계적으로 방문하는 프로세스이다. 각 순회 방법은 노드를 방문하는 순서가 다르며, 이는 다양한 응용 프로그램에서 서로 다른 목적으로 사용된다. 트리 순회 방법은 각기 다른 특성과 장단점을 가지고 있으며, 문제의 성격에 따라 적합한 순회 방법을 선택해야 한다. 중위 순회(Inorder): 정렬된 순서가 필요할 때 특히 이진 탐색 트리에서 유용하다. 전위 순회(Preorder): 트리의 구조를 복제하거나 직렬화할 때 효과적이다. 후위 순회(Postorder): 자식 노드를 먼저 처리해야 하는 경우, 특히 트리 삭제 작업에 적합하다. 레벨 순서 순회(Level Order): 레벨별 처리가 필요하거나 최단 경로 문제를 해결할 때 유용하다. 각 순회 방법의 구현은 재귀적 접근법과 반복적 접근법 모두 가능하지만, 복잡성과 효율성 측면에서 차이가 있다. 재귀적 접근법은 구현이 간단하지만 깊은 트리에서는 스택 오버플로우가 발생할 수 있다. 반복적 접근법은 더 복잡한 구현이 필요하지만 메모리 효율성이 높다. ...

December 6, 2024 · 10 min · Me

JIT Compiler vs AOT Compiler

JIT Compiler vs. AOT Compiler JIT 컴파일러와 AOT 컴파일러는 모두 소스 코드 또는 중간 표현(바이트코드)을 기계어 코드로 변환한다는 공통점을 가지지만, 언제 그리고 어떻게 컴파일하는지에 큰 차이가 있다. JIT와 AOT 컴파일러는 각각 고유한 장단점을 가지고 있으며, 사용 환경과 요구사항에 따라 적합한 접근 방식이 달라진다. JIT 컴파일러는 런타임 정보를 활용한 최적화와 플랫폼 독립성을 제공하는 반면, AOT 컴파일러는 빠른 시작 시간과 예측 가능한 성능을 제공한다. 현대 소프트웨어 개발에서는 이 두 접근 방식의 장점을 결합한 하이브리드 방식이 점점 더 인기를 얻고 있다. 앞으로는 기계 학습, 특화된 하드웨어 활용, WebAssembly 확산 등의 동향이 컴파일러 기술의 발전을 이끌 것으로 예상된다. ...

October 14, 2024 · 6 min · Me

JSON vs. XML vs. Protobuf vs. MessagePack vs. Parquet

JSON vs. XML vs. Protobuf vs. MessagePack vs. Parquet 데이터 직렬화 형식은 애플리케이션 간 데이터 교환의 핵심 요소이다. 세 가지 직렬화 형식은 각각 고유한 장단점이 있어 특정 사용 사례에 더 적합하다: JSON은 웹 애플리케이션과 사람이 읽을 수 있는 인터페이스에 이상적이다. 단순성과 광범위한 지원이 특징이다. XML은 복잡한 문서와 엔터프라이즈 시스템에 적합하다. 강력한 스키마 지원과 메타데이터 처리 능력이 있다. Protobuf는 고성능 시스템과 마이크로서비스 아키텍처에 최적화되어 있다. 속도와 효율성이 중요한 경우에 탁월하다. 선택은 프로젝트 요구사항, 팀 전문성, 상호운용성 요구사항, 성능 고려사항에 따라 달라질 수 있다. 단일 프로젝트 내에서도 다양한 부분에 서로 다른 형식을 사용하는 것이 적절할 수 있다. ...

October 26, 2024 · 4 min · Me

Encoding and Decoding

인코딩 (Encoding)과 디코딩 (Decoding) 아래는 주어진 프레임워크에 따라 “Encoding and Decoding"에 대한 1단계(기본 분석 및 검증) 작업입니다. 각 세부 요구사항과 표준 형식, 구조를 반영하여 단계별로 체계적으로 작성합니다. 1단계: 기본 분석 및 검증 1. 주제 유형 식별 이론/개념형(A형) 인코딩(Encoding)과 디코딩(Decoding)은 데이터 표현(Data Representation)의 핵심 이론적 개념이며, 수학적/논리적 모델과 규칙 기반의 추상화가 요구됩니다. 2. 복잡도 평가 (Level 1-3) 기초(1): 비트, 바이트, 문자 집합, 데이터 타입별 기본 개념 중급(2): 인코딩 방식간 비교, 오류 검증 코드, 실무 구현 사례 고급(3): 복잡한 인코딩(예: 베이스64(Base64), Huffman, ASN.1, 영상/음성 압축), 산업별 적용 사례, 최신 트렌드 이번 조사에서는 **Level 2(중급)**을 기본으로 하며, 실무 지향의 심화 예시도 일부 적용합니다. ...

October 26, 2024 · 39 min · Me

Poetry vs uv vs Rye

Poetry vs. Uv vs. Rye Poetry, uv, Rye는 모두 파이썬 프로젝트 관리와 패키지 설치를 위한 도구들이다. 각각의 도구는 고유한 특징과 장단점을 가지고 있어 개발자들의 다양한 요구사항을 충족시키고 있다. Poetry는 파이썬 프로젝트의 의존성 관리와 패키징을 위한 도구로, 2018년에 출시되었다. 주요 특징으로는 의존성 해결, 가상 환경 관리, 프로젝트 패키징 등이 있다. uv는 Rust로 작성된 초고속 파이썬 패키지 설치 및 의존성 해결 도구이다. pip와 pip-tools의 대체제로 설계되었으며, 속도와 효율성에 중점을 두고 있다. Rye는 Flask의 개발자인 Armin Ronacher가 개발한 올인원 파이썬 프로젝트 관리 도구이다. 파이썬 버전 관리, 의존성 관리, 가상 환경 생성 등 다양한 기능을 제공한다. Poetry, uv, Rye에 대한 비교를 요청하신 카테고리별로 표로 정리했습니다. 각 도구의 특징을 비교하여 살펴볼 수 있도록 구성했습니다. ...

November 27, 2024 · 3 min · Me